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Abstarct: This research develops a dynamic system model to optimize inventory policies in multi-echelon supply chains within
the sport footwear industry, addressing challenges from the bullwhip effect and supply chain disruptions. The sports footwear
sector faces unique inventory management challenges due to complex demand patterns influenced by seasonality, fashion trends,
and competitive dynamics. Our comprehensive system dynamics model captures the intricate relationships between four supply
chain echelons: retailers, distributors, manufacturers, and raw material suppliers. The model integrates machine learning
algorithms—specifically Long Short-Term Memory (LSTM) neural networks—for adaptive demand prediction and employs
genetic algorithm optimization to determine optimal inventory parameters under various disruption scenarios. Using real-world
data from a leading sports footwear manufacturer, we validated the model under normal operations and three distinct disruption
scenarios: raw material shortages (45% reduction for 6 weeks), manufacturing capacity constraints (30% reduction for 8 weeks),
and transportation disruptions (doubled lead times for 4 weeks). Results demonstrate that our proposed hybrid model reduces
overall inventory costs by 18.7% compared to traditional policies while maintaining a 97.2% service level. The integration of
machine learning for demand forecasting reduced prediction errors by 43.6% compared to conventional methods, directly
mitigating the bullwhip effect by decreasing the order variability coefficient from 0.89 to 0.61 at the supplier level. Furthermore,
the model enhanced supply chain resilience by reducing recovery time by 42% following major disruptions. This research
contributes to the theoretical understanding of complex supply chain dynamics and practical applications for inventory
management in volatile industries, offering a robust framework for decision-making under uncertainty.
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1. Introduction

Supply chain management in the sports footwear industry presents unique challenges due to the
combination of fashion-driven consumer demand, technological innovation, seasonal variations, and
intense market competition. The industry’s complex multi-echelon structure—from raw material
suppliers to retailers—amplifies these challenges, particularly through the bullwhip effect
phenomenon [1]. This effect, characterized by increasing order variability as one moves upstream in
the supply chain, leads to inefficient inventory policies, higher costs, and reduced service levels [2].

The sports footwear industry’s vulnerability to supply chain disruptions further complicates
inventory management. Recent global events, including the COVID-19 pandemic, have exposed
significant vulnerabilities in global supply chains, with the sports footwear sector being particularly
affected due to its reliance on global sourcing networks and just-in-time inventory systems
[3]. Thesedisruptions manifest at various echelons, from raw material shortages to manufacturing
capacity constraints and logistics disruptions, creating cascading effects throughout the supply chain
[4].

Traditional inventory management approaches typically employ static models that fail to capture
the dynamic interactions between supply chain echelons and the evolving nature of disruptions [5].
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Moreover, these approaches often treat each echelon as independent, overlooking the systemic
effects that decisions at one level have on others. As a result, companies frequently experience excess
inventory in some categories while simultaneously facing stockouts in others, especially during
disruptions. [6].

System dynamics modelling offers a promising approach to address these limitations by capturing
the complex feedback mechanisms, time delays, and nonlinear relationships that characterize multi-
echelon supply chains. [7]. By incorporating machine learning algorithms for demand prediction and
metaheuristic optimization techniques for parameter tuning, this approach can better adapt to changing
conditions and optimize inventory policies across the supply chain. [8].

This research aims to develop and validate a dynamic system model for optimizing inventory
policies in multi-echelon sports footwear supply chains, specifically to mitigate the bullwhip effect
and enhance resilience against disruptions. The study addresses the following research questions:

1. How can system dynamics modelling effectively capture the complexities of multi-echelon

inventory management in the sport footwear industry?

2. How do different supply chain disruptions affect inventory performance across multiple

echelons?

3. How can machine learning algorithms and metaheuristic optimization techniques enhance

inventory policy decisions under conditions of uncertainty?
4. What strategies can effectively mitigate the bullwhip effect while maintaining resilience
against supply chain disruptions?

2. Methodology
2.1 Research Design

This study employed a mixed-method research design combining quantitative modelling with
qualitative insights from industry experts. The research process consisted of four main phases: (1)
system conceptualization and boundary definition, (2) model development, (3) data collection and
model validation, and (4) scenario analysis and policy optimization.

2.2 System Conceptualization

The supply chain system under investigation was conceptualized as a four-echelon network
comprising retailers, distributors, manufacturers, and raw material suppliers within the sports footwear
industry. Based on a comprehensive literature review and industry expert consultations, we identified
key variables affecting inventory dynamics, including:

o Demand patterns (seasonal fluctuations, trend changes, promotional effects)

« Production capacities and constraints.

o Lead times across different echelons.

e Information sharing mechanisms.

e Inventory policies (safety stock levels, reorder points, order quantities).

« Potential disruption sources and their characteristics.

2.3 System Dynamics Model Development

The system dynamics model was developed using Vensim DSS software following the
methodology outlined by Sterman (2000) [7]. The model structure included:
i. Il. Stock and Flow Diagrams: Key stocks included inventory levels at each echelon, work-
in-progress, and backorders. Flows represented order rates, production rates, and delivery rates.
ii.  Causal Loop Diagrams: Multiple feedback loops were identified, including:
e Order fulfilment loops (balancing).
e Inventory adjustment loops (balancing).
e Production capacity adjustment loops (balancing).
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o Demand amplification loops (reinforcing).
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Figure 1. Causal Loop Diagram Dynamic System Model for Multi-Echelon Inventory Policy
Optimization Considering Bullwhip Effect and Supply Chain Disruptions in the Sport Footwear
Industry

iii.  Mathematical Formulations: The core inventory dynamics (1) were represented through

differential equations governing the rate of change of inventory levels (I) at each echelon (e):
e = Inflow,(t) — Outflow,(t) 1)
Where:
o $Inflow_e(t)$ represents incoming deliveries from the upstream echelon.
o $Outflow_e(t)$ represents outgoing deliveries to the downstream echelon.
The ordering policy at each echelon (2) incorporated an adaptive approach combining

forecasted demand, inventory position, and safety stock:

0.(t) = F,(0) + a(SSe — 1R(1)) )
Where:
o $0 _e(t)$ is the order quantity at time t.
o $F_e(t)$ is the forecasted demand.
o $SS_e$is the safety stock level.
o S$IP_e()$ is the inventory position.
o $\alpha$ is the inventory adjustment parameter.

2.4 Machine Learning Integration for Demand Forecasting

We integrated machine learning algorithms with the system dynamics model to enhance demand
prediction capabilities. A Long Short-Term Memory (LSTM) neural network was implemented to
forecast demand patterns based on historical data, incorporating factors such as:

o Historical sales patterns;

e Seasonal indices;

e Promotional events;

e Market trends;

e Macroeconomic indicators.
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The LSTM model was trained on three years of weekly sales data from a leading sports footwear
manufacturer, with 80% used for training and 20% for validation. The model architecture consisted
of:

An input layer with 12 neurons (representing 12 weeks of historical data);
Two hidden LSTM layers with 64 neurons each;

A dropout layer (0.2) to prevent overfitting;

A dense output layer predicting demand for the next 8 weeks.

The forecasting outputs from the LSTM model were then fed into the system dynamics model to
inform ordering decisions at each echelon.

2.5 Metaheuristic Optimization for Inventory Parameters

To determine optimal inventory policy parameters under different conditions, we implemented a
genetic algorithm (GA) optimization approach (3). The GA optimized key decision variables,
including:

o Safety stock levels at each echelon;

e Reorder points;

« Order quantities;

e Inventory adjustment parameters.

The fitness function for the GA incorporated multiple objectives:

(SC, . B.(D)

MinZ=w, XE_3T_(HC,. I,(t)) + w, XE_, 3T
IZe—l Zt—l( e e( )) ZZe—IZt—I_l_ w3 Zg=1z’£=1(069 . Oe(t))
Where:
o $HC e$is the holding cost at echelon e.
$SC_e$ is the stockout cost at echelon e.
$OC_e$ is the ordering cost at echelon e.
$B_e(t)$ is the backorder level at time t.

$w_1,w 2, w_3$ are weights reflecting the relative importance of each cost component.

©)

2.6 Mathematical Formulation of the System Dynamics Model
a) Nomenclature
Indices and Sets:

o $elin E ={1,2,3,4}$: Set of echelons (1=retailer, 2=distributor, 3=manufacturer, 4=supplier).
o $t\in T$: Set of time periods.
o 3$p\in P$: Set of products.

Variables:

$1_{e,p}()$: Inventory level of product $p$ at echelon $e$ at time $t$.

$B_{e,p}(t)$: Backlog level of product $p$ at echelon $e$ at time $t$.

$0_{e,p}(t)$: Order rate of product $p$ placed by echelon $e$ at time $t$.

$S_{e,p}(t)$: Shipment rate of product $p$ from echelon $e$ to echelon $e-1$ at time $t$.
$IP_{e,p}(1)$: Inventory position of product $p$ at echelon $e$ at time $t$.

$F {e,p}(t)$: Forecasted demand of product $p$ at echelon $e$ for time $t$.

$D p(t)$: Customer demand for product $p$ at time $t$.

$SWIP_{e,p}(t)$: Work-in-process inventory of product $p$ at echelon $e$ at time $t$.
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Parameters:

1)

2)

$LT e$: Lead time for echelon $e$.

$SS_{e,p}$: Safety stock level for product $p$ at echelon $e$.
$ROP_{e,p}$: Reorder point for product $p$ at echelon $e$.
$\alpha_e$: Inventory adjustment parameter for echelon $e$.
$\beta_e$: Forecast smoothing parameter for echelon $e$.
$MC_e$: Manufacturing capacity at echelon $e$.

$RMA t$: Raw material availability at time $t$.

$DV_p(t)$: Demand variability for product $p$ at time $t$.

System Dynamics Equations

Stock Equations

Inventory Level Dynamics: The rate of change in inventory level (4) at each echelon is
determined by the difference between inflow (shipments received) and outflow (shipments sent):

dlep (t)
;t = Se+1,p(t - LTe+1) - Se,p(t) (4)
For the supplier (echelon 4), production replaces incoming shipments (5):
dlap(t)
‘ZJt = P4,p(t_ LT4) - S4,p(t) (5)

Backlog Dynamics: The rate of change in Backlog (6) is determined by incoming orders minus
outgoing shipments:

dBe (1)
d—i = Oe—l,p(t) - Se,p (t) (6)

For the retailer (echelon 1), customer demand replaces incoming orders (7):

dBy ,(t)
120 = Dy(t) = S;,(0) )

Work-in-Process Dynamics (8): WIP represents orders that have been placed but not yet
received:

AWIPg 1, (t)
Tp = Oe,p(t) - Se+1,p(t - LTe+1) (8)

Flow Equations

Order Rate (9): Orders are determined by forecasted demand, desired inventory adjustment,
and safety stock policies:

Opp(t) = Fopy () + ¢ .(SSep + ROP., — IP, (1)) )
Where inventory position (10) is defined as:
IP, ,(t) = I, (t) — Bep(t) + WIP, (1) (10)

Shipment Rate (11): Shipments are constrained by inventory availability and Backlog:

Sep(® = min (‘0O Fer Oy ) 1)
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3)

For the manufacturer (echelon 3), production capacity adds a constraint (12) :
. (L3,(t Bs ,(t
S3p(t) = mm( 3( )/At’ an( )/At'MC3> (12)

Production Rate (13): For the supplier (echelon 4), production is constrained by raw material
availability:

Py, (t) = min(04,p (t), RMA,. allocationp,t) (13)
Where allocation represents the proportion of raw materials allocated to product $p$ at time $t$.
Aucxiliary Equations
Demand Forecasting (14): Traditional exponential smoothing:

Fe,p(t) = Pe -Oe—l,p(t) + (1- ﬁe)-Fe,p(t -1) (14)

For the retailer (echelon 1) (15) :

Fip(t) = B1.-Dp(t) + (1 — By) .Fip(t—1) (15)

LSTM-based Demand Forecasting (16): When using machine learning, the forecast is generated
by the LSTM model:

Fy,(t) = LSTM(D, (t — 1), Dp(t — 2), ... ... Dy (t — 1), X;) (16)

$X_t$ represents additional features, including seasonality indices, promotional events, etc.
Service Level (17): Service level at echelon $e$ for product $p$ is calculated as:

Bep(t)
Dp(t)+ €

SLep(t) =1-— 17

Where $\epsilon$ is a small constant to avoid division by zero.

Disruption Modeling
Raw Material Disruption (18): When a raw material disruption occurs, availability is reduced:

RM Ay = RM Anormar- (1 — Severityyay - leer,,,) (18)

Manufacturing Capacity Disruption (19): When a manufacturing disruption occurs, capacity is
reduced:

MCB = MC3,normal ' (1 - Severitymanufacturing . 1t6Tmanufacturing) (19)
Transportation Disruption (20): When a transportation disruption occurs, lead times increase:
LT, = LTenormar - (1 + Severityirans - 1tETtrans) (20)

Genetic Algorithm Optimization (21)

The GA optimizes the following decision variables:
Safety stock levels: $SS_{e,p}$.

Reorder points: $SROP_{e,p}$.

Inventory adjustment parameters: $\alpha_e$.
Forecast smoothing parameters: $\beta_e$.
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2.7

For

The objective function to minimize is :
MinZ=%2_, %, Xi- 1(0)1 HCop 1o (t) + wy.Bep(t) + w3.0C, -Oe,p(t)) (21)
Where:
$HC {e,p}$ is the holding cost per unit of product $p$ at echelon $e$.
$SC_{e,p}$ is the stockout cost per unit of product $p$ at echelon $e$.
$0OC _{e,p}$ is the ordering cost per order of product $p$ at echelon $e$.
$w_1,w_2,w_3$ are weights reflecting the relative importance of each cost component.

Bullwhip Effect Quantification
The bullwhip effect (22) is quantified by comparing the coefficient of variation (CV) of orders at
different echelons (23) :

_ CV(0ep)
BWE,, = o (D:) (22)
Where:
cvx) == (23)

A value of $SBWE_{e,p} > 1$ |nd|cates the presence of the bullwhip effect, with higher values
representing stronger demand amplification.

Specific Mathematical Formulation for the Sport Footwear Industry

the sports footwear industry application, we incorporate additional factors:

Seasonal Demand Pattern (24): Customer demand includes a seasonal component :
D,(t) = Base, + Trend, .t + Seasonal,(t) + Promotion,(t) + €; (24)

$Seasona|_p(t)$ captures the seasonal pattern and $Promotion_p(t)$ captures the effect of

promotional activities.

Product Lifecycle (25): For fashion-driven sports footwear, we incorporate product

lifecycle effects:

D,(t) = Base, .Lifecycle,(t) + Promotion,(t) + € (25)
SLifecycle_p(t)$ follows a typical product lifecycle curve (introduction, growth, maturity,
decline).
Material Constraints (26): Component availability constraints are modelled as follows:

) Yper Cmp -Pap() < RM Ay VypeMteT (26)
Where:

e $C_{m,p}$ is the amount of material $m$ required for product $p$;
o SRMA_{m,t}$ is the availability of material $m$ at time $t$;
e $M$is the set of materials.
This mathematical formulation, combined with the Causal Loop Diagram, provides a

comprehensive framework for analyzing and optimizing the multi-echelon inventory system in the
sport footwear industry.

The GA was configured with a population size of 100, crossover probability of 0.8, mutation

probability of 0.1, and was run for 500 generations.

2.8

Data Collection

Data for model calibration and validation were collected from multiple sources:
1. Primary data: Two years of weekly inventory and order data from a major sport footwear
manufacturer and its supply chain partners, including:
a) Point-of-sale data from 120 retail locations;
b) Order and inventory records from 8 regional distribution centres;
¢) Production and inventory data from 3 manufacturing facilities;
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d) Procurement data from 12 key raw material suppliers.

2. Secondary data: Industry reports, academic literature, and publicly available information on
sport footwear supply chains.

3. Expert input: Semi-structured interviews with 15 supply chain professionals from the sports
footwear industry to validate model assumptions and parameters.

2.9 Model Validation

The system dynamics model was validated using several techniques:

1. Structure validation: Expert reviews of causal loop diagrams and stock-flow structures;

2. Parameter validation: Calibration using historical data and sensitivity analysis;

3. Behaviour validation: Comparison of model outputs with historical patterns;

4. Extreme condition testing: Verifying model robustness under extreme parameter values.
The validation confirmed that the model accurately reproduced historical inventory dynamics and the
bullwhip effect observed in the supply chain.

2.10 Disruption Scenario Design

Three distinct disruption scenarios were developed to test the model’s performance and optimize
inventory policies:

1. Raw material shortage: 45% reduction in raw material availability for 6 weeks;

2. Manufacturing capacity constraint: 30% reduction in production capacity for 8 weeks;

3. Transportation disruption: Doubling of lead times between echelons for 4 weeks.
These scenarios were designed based on historical disruption events in the sports footwear industry
and expert assessments of future risks.

3. Results and Discussion
3.1 Baseline System Behavior

The calibrated model successfully reproduced the bullwhip effect observed in the sport footwear
supply chain. Figure 1 illustrates the amplification of order variability across the four echelons under
normal operating conditions. Order variability, measured by the coefficient of variation, increased
from 0.32 at the retail level to 0.89 at the raw material supplier level, confirming the presence of the
bullwhip effect.

Analysis of the baseline simulation revealed several key factors contributing to the bullwhip effect in
the sports footwear supply chain:

1. Demand forecasting errors: Traditional forecasting methods used by supply chain partners
resulted in a mean absolute percentage error (MAPE) of 24.6%, significantly contributing to
inventory oscillations;

2. Batch ordering practices: Minimum order quantities imposed by manufacturers and
distributors led to order batching, amplifying demand variability;

3. Price fluctuations: Promotional activities and discount periods created temporary demand
spikes that propagated through the supply chain with increasing amplitude;

4. Lead time variability: Inconsistent lead times across different product categories increased
uncertainty in inventory planning.

3.2 Machine Learning Forecasting Performance
The integrated LSTM forecasting model demonstrated superior performance compared to traditional

forecasting methods. Table 1 compares forecast accuracy metrics between the LSTM model and
conventional methods used by the case company.
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Table 1. Comparison of Forecasting Methods
Forecasting Method = MAPE (%) MAD RMSE

LSTM Model 12.3 145.6  203.7
Moving Average 25.4 278.9 364.2
Exponential 218 2463 3295
Smoothing

Linear Regression 19.7 229.8 3014

The LSTM model reduced forecasting error by 43.6% compared to the currently used exponential
smoothing method. This figure is derived from Table 1 in the Results and Discussion section (3.2
Machine Learning Forecasting Performance). The table compares forecasting methods and shows that
the LSTM model had a MAPE (Mean Absolute Percentage Error) of 12.3%, while the Exponential
Smoothing method (the conventional method used by the case company) had a MAPE of 21.8%. The
percentage improvement is calculated as: (21.8% - 12.3%) / 21.8% = 0.436 or 43.6%. This represents
how much the forecasting error was reduced by switching from the conventional exponential
smoothing method to the LSTM machine learning model when integrated into the system dynamics
model. This improved forecasting accuracy reduced the bullwhip effect, with the coefficient of
variation at the raw material supplier level decreasing from 0.89 to 0.61. These figures appear in
sections 3.1 (Baseline System Behavior) and 3.2 of the Results and Discussion. The paper states that
under normal operating conditions, the coefficient of variation increased from 0.32 at the retail level
to 0.89 at the raw material supplier level, confirming the presence of the bullwhip effect. Later, in
section 3.2, the paper mentions that when the LSTM model was integrated into the system dynamics
model, “this improved forecasting accuracy reduced the bullwhip effect, with the coefficient of
variation at the raw material supplier level decreasing from 0.89 to 0.61.” So the figures 0.89 and 0.61
represent the coefficient of variation (a measure of the bullwhip effect) at the supplier level before and
after implementing the machine learning forecasting approach, respectively.

3.3 Optimized Inventory Policies
The genetic algorithm optimization yielded distinct inventory policies for each echelon. Table 2

summarizes the optimized parameters compared to the baseline policies.

Table 2. Comparison of Baseline and Optimized Inventory Policies

Echelon Parameter Baseline Policy Optimized Policy Change (%)
Retailer Safety Stock (days) 14 10 -28.6%
Reorder Point (units) 560 420 -25.0%
Order Frequency (days) 7 5 -28.6%
Distributor Safety Stock (days) 21 16 -23.8%
Reorder Point (units) 1200 975 -18.8%
Order Frequency (days) 14 10 -28.6%
Manufacturer Safety Stock (days) 28 20 -28.6%
Reorder Point (units) 3500 2800 -20.0%
Order Frequency (days) 21 15 -28.6%
gj;;l'}gfte”a' Safety Stock (days) 35 25 28.6%
Reorder Point (units) 5000 3800 -24.0%
Order Frequency (days) 30 20 -33.3%
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The optimized policies resulted in an 18.7% reduction in total inventory costs while maintaining a
service level of 97.2% compared to the baseline policy’s 96.8%. This figure comes directly from
section 3.3 of the Results and Discussion section (Optimized Inventory Policies). After presenting
Table 2, which compares baseline and optimized inventory policies, the paper explicitly states: “The
optimized policies resulted in an 18.7% reduction in total inventory costs while maintaining a service
level of 97.2% compared to the baseline policy’s 96.8%. These service level percentages also come
directly from the same sentence in section 3.3. The service level metrics show that despite reducing
inventory costs significantly (18.7%), the optimized policies improved service levels slightly (from
96.8% to 97.2%). This is important because it demonstrates that the cost reductions didn’t come at the
expense of customer service. The most significant improvements came from decreased safety stock
levels and more frequent, smaller orders, which mitigated the bullwhip effect directly.

3.4 Disruption Scenario Analysis

The model’s performance was evaluated under the three disruption scenarios, comparing traditional
policies, optimized static policies, and the proposed adaptive policies that leverage machine learning
forecasting and dynamic parameter adjustment.

3.4.1 Raw Material Shortage Scenario

The adaptive policy outperformed traditional and optimized static policies when faced with a 45%
reduction in raw material availability for 6 weeks. Figure 2 shows the inventory levels at the
manufacturer echelon under the three policy approaches.

a) Adaptive policy (93.4%): This proposed approach combines machine learning forecasting
with dynamic parameter adjustment, which performed best in maintaining service levels during
the disruption.

b) Traditional policy (78.2%): This represents the conventional inventory management
approaches used before optimization, which performed worst during the disruption.

c) Optimized static policy (85.7%): This refers to policies that were optimized using the genetic
algorithm but without the dynamic adaptation capabilities, which performed better than
traditional policies but not as well as the fully adaptive approach.

Raw Material Shortage Period

= Traditional Policy
Optimized Static

== Adaptive Policy —

Inventory Level (units)

Critical Level

0 4 8 12 16 20 24
Time (Weeks)

Figure 2. Inventory Level at Manufacturer During Raw Material Shortage
This improvement was achieved through:
1. Early detection of supply disruption through pattern recognition in the LSTM model;

2. Dynamic reallocation of raw materials to priority products;
3. Gradual adjustment of safety stock levels across all echelons.
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3.4.2 Manufacturing Capacity Constraint Scenario
Under a 30% reduction in production capacity for 8 weeks, the adaptive policy demonstrated superior
performance in managing the production backlog. The key metrics are summarized in Table 3.

Table 3. Performance Under Manufacturing Capacity Constraint

Metric Tradit'ional Op'timize'd Adar._)tive
Policy Static Policy Policy
Maximum Backlog (units) 14,52 10,84 7,32
Average Service Level (%) 81.5 88.3 94.1
Recovery Time (weeks) 12 9 7
Total Cost Increase (%) 38.7 24.3 16.2

The adaptive policy achieved these improvements through:
1. Prioritization of high-margin and high-demand products;
2. Dynamic adjustment of order quantities based on real-time capacity constraints;
3. Coordinated inventory adjustments across echelons to smoothen the impact of capacity
reduction.

3.4.3 Transportation Disruption Scenario

When lead times doubled between echelons for 4 weeks, the adaptive policy significantly reduced the
negative impacts on inventory performance, as shown in Figure 3.

The adaptive policy reduced the bullwhip effect amplification during the disruption period, with the
coefficient of variation at the raw material supplier level reaching only 1.12 compared to 1.78 under
the traditional policy. The coefficient of variation is a standardized measure of dispersion calculated
as the ratio of the standard deviation to the mean (CV = o/p). In supply chain management, it’s
commonly used to quantify the bullwhip effect by comparing the variability of orders at different
echelons.

2.0 Traditional Policy
Adaptive Policy

1.32

112
0.95

0.75
08

0.53

Coefficient of Variation

0.40
04 0.33

0.0

Retailer Distributor __Manufacturer  Raw Material Supplier
Supply Chain Echelon

Figure 3. Bullwhip Effect During Transportation Disruption

The lower value under the adaptive policy (1.12 vs 1.78) indicates that order variability was
significantly reduced compared to the traditional policy. This 37% reduction in the coefficient of
variation demonstrates that the adaptive policy was more effective at mitigating the bullwhip effect
during the transportation disruption scenario.
This improvement was achieved through:

1. Anticipatory ordering based on early warning signals detected by the LSTM model;

2. Temporary adjustment of safety stock levels to accommodate increased lead time uncertainty;
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3. Coordinated communication protocols that reduced information distortion across echelons.
3.5 Sensitivity Analysis

To assess the robustness of the proposed model, we conducted a sensitivity analysis on key parameters.
Figure 4 illustrates how total supply chain costs vary with changes in demand variability, lead time,
and forecast accuracy.

The results indicate that the adaptive policy maintained its superiority across various parameter values,
with the most significant advantage observed under high-demand variability conditions. The model
was most sensitive to forecast accuracy, highlighting the importance of the machine learning
component in the overall system performance.

4. Conclusion

This research developed and validated a dynamic system model for optimizing inventory policies in
multi-echelon sports footwear supply chains, addressing the challenges posed by the bullwhip effect
and supply chain disruptions. Integrating system dynamics modelling with machine learning for
demand forecasting and metaheuristic optimization for parameter tuning yielded several significant
findings.

First, the study demonstrated the efficacy of system dynamics modelling in capturing the complex
interactions between supply chain echelons and the resulting bullwhip effect in the sport footwear
industry. By modelling the feedback mechanisms and time delays inherent in multi-echelon systems,
the approach provided valuable insights into the causes and potential solutions for demand
amplification.

Second, the research quantified the impacts of different disruption types on inventory performance
across multiple echelons. Raw material shortages were found to have the most severe long-term
effects, while transportation disruptions caused the most significant short-term service level
degradation. Manufacturing capacity constraints created the most challenging recovery dynamics due
to the backlog accumulation effect.

Third, integrating machine learning algorithms for demand forecasting significantly improved
prediction accuracy, reducing forecasting errors by 43.6% compared to traditional methods. This
improvement directly contributed to bullwhip effect mitigation by lowering one of its primary
causes—demand signal distortion.

Fourth, the metaheuristic optimization approach identified inventory policies that reduced total costs
by 18.7% while maintaining high service levels, demonstrating the potential for significant efficiency
improvements in sport footwear supply chains through optimized parameter settings.

Finally, the adaptive policy combining machine learning forecasting with dynamic parameter
adjustment demonstrated superior performance under disruption scenarios, reducing recovery time by
42% compared to traditional approaches and maintaining higher service levels throughout the
disruption period.

These findings have important implications for both theory and practice. Theoretically, the research
advances our understanding of how machine learning can be effectively integrated with system
dynamics modelling to enhance supply chain resilience. From a practical perspective, the findings
offer sports footwear companies a framework for developing more robust inventory policies that can
withstand disruptions while minimizing costs.

Future research could extend this work by incorporating additional echelons or parallel supply chains,
exploring the impact of different information-sharing strategies, or applying the model to other
industries with similar characteristics. Additionally, integrating blockchain technology for enhanced
supply chain visibility represents a promising direction for further model development.
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