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Abstarct: This research develops a dynamic system model to optimize inventory policies in multi-echelon supply chains within 

the sport footwear industry, addressing challenges from the bullwhip effect and supply chain disruptions. The sports footwear 

sector faces unique inventory management challenges due to complex demand patterns influenced by seasonality, fashion trends, 

and competitive dynamics. Our comprehensive system dynamics model captures the intricate relationships between four supply 

chain echelons: retailers, distributors, manufacturers, and raw material suppliers. The model integrates machine learning 

algorithms—specifically Long Short-Term Memory (LSTM) neural networks—for adaptive demand prediction and employs 

genetic algorithm optimization to determine optimal inventory parameters under various disruption scenarios. Using real-world 

data from a leading sports footwear manufacturer, we validated the model under normal operations and three distinct disruption 

scenarios: raw material shortages (45% reduction for 6 weeks), manufacturing capacity constraints (30% reduction for 8 weeks), 

and transportation disruptions (doubled lead times for 4 weeks). Results demonstrate that our proposed hybrid model reduces 

overall inventory costs by 18.7% compared to traditional policies while maintaining a 97.2% service level. The integration of 

machine learning for demand forecasting reduced prediction errors by 43.6% compared to conventional methods, directly 

mitigating the bullwhip effect by decreasing the order variability coefficient from 0.89 to 0.61 at the supplier level. Furthermore, 

the model enhanced supply chain resilience by reducing recovery time by 42% following major disruptions. This research 

contributes to the theoretical understanding of complex supply chain dynamics and practical applications for inventory 

management in volatile industries, offering a robust framework for decision-making under uncertainty.  

Keywords: System dynamics, Multi-echelon inventory, Bullwhip effect, Supply chain, Sport Footwear Industries 

 

 

1. Introduction 

 

Supply chain management in the sports footwear industry presents unique challenges due to the 

combination of fashion-driven consumer demand, technological innovation, seasonal variations, and 

intense market competition. The industry’s complex multi-echelon structure—from raw material 

suppliers to retailers—amplifies these challenges, particularly through the bullwhip effect 

phenomenon [1]. This effect, characterized by increasing order variability as one moves upstream in 

the supply chain, leads to inefficient inventory policies, higher costs, and reduced service levels [2]. 

The sports footwear industry’s vulnerability to supply chain disruptions further complicates 

inventory management. Recent global events, including the COVID-19 pandemic, have exposed 

significant vulnerabilities in global supply chains, with the sports footwear sector being particularly 

affected due to its reliance on global sourcing networks and just-in-time inventory systems 

[3].Thesedisruptions manifest at various echelons, from raw material shortages to manufacturing 

capacity constraints and logistics disruptions, creating cascading effects throughout the supply chain  

[4].  

Traditional inventory management approaches typically employ static models that fail to capture 

the dynamic interactions between supply chain echelons and the evolving nature of disruptions [5].  
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Moreover, these approaches often treat each echelon as independent, overlooking the systemic 

effects that decisions at one level have on others. As a result, companies frequently experience excess 

inventory in some categories while simultaneously facing stockouts in others, especially during 

disruptions. [6]. 

System dynamics modelling offers a promising approach to address these limitations by capturing 

the complex feedback mechanisms, time delays, and nonlinear relationships that characterize multi-

echelon supply chains. [7]. By incorporating machine learning algorithms for demand prediction and 

metaheuristic optimization techniques for parameter tuning, this approach can better adapt to changing 

conditions and optimize inventory policies across the supply chain. [8]. 

This research aims to develop and validate a dynamic system model for optimizing inventory 

policies in multi-echelon sports footwear supply chains, specifically to mitigate the bullwhip effect 

and enhance resilience against disruptions. The study addresses the following research questions: 

1. How can system dynamics modelling effectively capture the complexities of multi-echelon 

inventory management in the sport footwear industry? 

2. How do different supply chain disruptions affect inventory performance across multiple 

echelons? 

3. How can machine learning algorithms and metaheuristic optimization techniques enhance 

inventory policy decisions under conditions of uncertainty? 

4. What strategies can effectively mitigate the bullwhip effect while maintaining resilience 

against supply chain disruptions? 

 

2. Methodology 

2.1 Research Design 

 

This study employed a mixed-method research design combining quantitative modelling with 

qualitative insights from industry experts. The research process consisted of four main phases: (1) 

system conceptualization and boundary definition, (2) model development, (3) data collection and 

model validation, and (4) scenario analysis and policy optimization. 

 

2.2 System Conceptualization 

 

The supply chain system under investigation was conceptualized as a four-echelon network 

comprising retailers, distributors, manufacturers, and raw material suppliers within the sports footwear 

industry. Based on a comprehensive literature review and industry expert consultations, we identified 

key variables affecting inventory dynamics, including: 

• Demand patterns (seasonal fluctuations, trend changes, promotional effects) 

• Production capacities and constraints. 

• Lead times across different echelons. 

• Information sharing mechanisms. 

• Inventory policies (safety stock levels, reorder points, order quantities). 

• Potential disruption sources and their characteristics. 

 

2.3 System Dynamics Model Development 

 

The system dynamics model was developed using Vensim DSS software following the 

methodology outlined by Sterman (2000) [7]. The model structure included: 

i. II. Stock and Flow Diagrams: Key stocks included inventory levels at each echelon, work-

in-progress, and backorders. Flows represented order rates, production rates, and delivery rates. 

ii. Causal Loop Diagrams: Multiple feedback loops were identified, including: 

• Order fulfilment loops (balancing). 

• Inventory adjustment loops (balancing). 

• Production capacity adjustment loops (balancing). 
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• Demand amplification loops (reinforcing). 

 

Figure 1. Causal Loop Diagram  Dynamic System Model for Multi-Echelon Inventory Policy 

Optimization Considering Bullwhip Effect and Supply Chain Disruptions in the Sport Footwear 

Industry 

iii. Mathematical Formulations: The core inventory dynamics (1) were represented through 

differential equations governing the rate of change of inventory levels (I) at each echelon (e): 
𝑑𝐼𝑒

𝑑𝑡
= 𝐼𝑛𝑓𝑙𝑜𝑤𝑒(𝑡) −  𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑒(𝑡)       (1) 

Where: 

• $Inflow_e(t)$ represents incoming deliveries from the upstream echelon. 

• $Outflow_e(t)$ represents outgoing deliveries to the downstream echelon. 

The ordering policy at each echelon (2) incorporated an adaptive approach combining 

forecasted demand, inventory position, and safety stock: 

 

𝑂𝑒(𝑡) =  𝐹𝑒(𝑡) +  𝛼(𝑆𝑆𝑒 −  𝐼𝑃𝑒(𝑡))      (2) 

Where: 

• $O_e(t)$ is the order quantity at time t. 

• $F_e(t)$ is the forecasted demand. 

• $SS_e$ is the safety stock level. 

• $IP_e(t)$ is the inventory position. 

• $\alpha$ is the inventory adjustment parameter. 

 

2.4 Machine Learning Integration for Demand Forecasting 

 

We integrated machine learning algorithms with the system dynamics model to enhance demand 

prediction capabilities. A Long Short-Term Memory (LSTM) neural network was implemented to 

forecast demand patterns based on historical data, incorporating factors such as: 

• Historical sales patterns; 

• Seasonal indices; 

• Promotional events; 

• Market trends; 

• Macroeconomic indicators. 
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The LSTM model was trained on three years of weekly sales data from a leading sports footwear 

manufacturer, with 80% used for training and 20% for validation. The model architecture consisted 

of: 

• An input layer with 12 neurons (representing 12 weeks of historical data); 

• Two hidden LSTM layers with 64 neurons each; 

• A dropout layer (0.2) to prevent overfitting; 

• A dense output layer predicting demand for the next 8 weeks. 

The forecasting outputs from the LSTM model were then fed into the system dynamics model to 

inform ordering decisions at each echelon. 

 

2.5 Metaheuristic Optimization for Inventory Parameters 

 

To determine optimal inventory policy parameters under different conditions, we implemented a 

genetic algorithm (GA) optimization approach (3). The GA optimized key decision variables, 

including: 

• Safety stock levels at each echelon; 

• Reorder points; 

• Order quantities; 

• Inventory adjustment parameters. 

 

The fitness function for the GA incorporated multiple objectives: 

 

Min Z = 𝜔1 ∑ ∑ (𝐻𝐶𝑒 .  𝐼𝑒(𝑡))𝑇
𝑡=1

𝐸
𝑒=1 +  𝜔2 ∑ ∑

(𝑆𝐶𝑒 .  𝐵𝑒(𝑡))

+ 𝜔3 ∑ ∑ (𝑂𝐶𝑒  .  𝑂𝑒(𝑡))𝑇
𝑡=1

𝐸
𝑒=1

𝑇
𝑡=1

𝐸
𝑒=1   (3) 

Where: 

• $HC_e$ is the holding cost at echelon e. 

• $SC_e$ is the stockout cost at echelon e. 

• $OC_e$ is the ordering cost at echelon e. 

• $B_e(t)$ is the backorder level at time t. 

• $w_1, w_2, w_3$ are weights reflecting the relative importance of each cost component. 

 

2.6 Mathematical Formulation of the System Dynamics Model 

 

a) Nomenclature 

 

Indices and Sets: 

 

• $e \in E = {1,2,3,4}$: Set of echelons (1=retailer, 2=distributor, 3=manufacturer, 4=supplier). 

• $t \in T$: Set of time periods. 

• $p \in P$: Set of products. 

 

Variables: 

 

• $I_{e,p}(t)$: Inventory level of product $p$ at echelon $e$ at time $t$. 

• $B_{e,p}(t)$: Backlog level of product $p$ at echelon $e$ at time $t$. 

• $O_{e,p}(t)$: Order rate of product $p$ placed by echelon $e$ at time $t$. 

• $S_{e,p}(t)$: Shipment rate of product $p$ from echelon $e$ to echelon $e-1$ at time $t$. 

• $IP_{e,p}(t)$: Inventory position of product $p$ at echelon $e$ at time $t$. 

• $F_{e,p}(t)$: Forecasted demand of product $p$ at echelon $e$ for time $t$. 

• $D_p(t)$: Customer demand for product $p$ at time $t$. 

• $WIP_{e,p}(t)$: Work-in-process inventory of product $p$ at echelon $e$ at time $t$. 
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Parameters: 

 

• $LT_e$: Lead time for echelon $e$. 

• $SS_{e,p}$: Safety stock level for product $p$ at echelon  $e$. 

• $ROP_{e,p}$: Reorder point for product $p$ at echelon $e$. 

• $\alpha_e$: Inventory adjustment parameter for echelon $e$. 

• $\beta_e$: Forecast smoothing parameter for echelon $e$. 

• $MC_e$: Manufacturing capacity at echelon $e$. 

• $RMA_t$: Raw material availability at time $t$. 

• $DV_p(t)$: Demand variability for product $p$ at time $t$. 

 

b) System Dynamics Equations 

1) Stock Equations 

Inventory Level Dynamics: The rate of change in inventory level (4) at each echelon is 

determined by the difference between inflow (shipments received) and outflow (shipments sent): 
𝑑𝐼𝑒𝑝(𝑡)

𝑑𝑡
=  𝑆𝑒+1,𝑝(𝑡 −  𝐿𝑇𝑒+1) −  𝑆𝑒,𝑝(𝑡)      (4) 

For the supplier (echelon 4), production replaces incoming shipments (5): 
𝑑𝐼4𝑝(𝑡)

𝑑𝑡
=  𝑃4,𝑝(𝑡 −  𝐿𝑇4) −  𝑆4,𝑝(𝑡)       (5) 

Backlog Dynamics: The rate of change in Backlog (6) is determined by incoming orders minus 

outgoing shipments: 

 
𝑑𝐵𝑒,𝑝(𝑡)

𝑑𝑡
=  𝑂𝑒−1,𝑝(𝑡) − 𝑆𝑒,𝑝(𝑡)       (6) 

 

For the retailer (echelon 1), customer demand replaces incoming orders (7): 

 
𝑑𝐵1,𝑝(𝑡)

𝑑𝑡
=  𝐷𝑝(𝑡) −  𝑆1,𝑝(𝑡)        (7) 

 

Work-in-Process Dynamics (8): WIP represents orders that have been placed but not yet 

received: 

 
𝑑𝑊𝐼𝑃𝑒,𝑝(𝑡)

𝑑𝑡
=  𝑂𝑒,𝑝(𝑡) −  𝑆𝑒+1,𝑝(𝑡 −  𝐿𝑇𝑒+1)      (8) 

 

2) Flow Equations 

 

Order Rate (9): Orders are determined by forecasted demand, desired inventory adjustment, 

and safety stock policies: 

 

𝑂𝑒,𝑝(𝑡) =  𝐹𝑒,𝑝(𝑡) + 𝛼𝑒 . (𝑆𝑆𝑒,𝑝 +  𝑅𝑂𝑃𝑒,𝑝 −  𝐼𝑃𝑒,𝑝(𝑡))    (9) 

 

Where inventory position (10)  is defined as: 

 

𝐼𝑃𝑒,𝑝(𝑡) =  𝐼𝑒,𝑝(𝑡) − 𝐵𝑒,𝑝(𝑡) +  𝑊𝐼𝑃𝑒,𝑝(𝑡)               (10) 

 

Shipment Rate (11): Shipments are constrained by inventory availability and Backlog: 

 

𝑆𝑒,𝑝(𝑡) = min (
𝐼𝑒,𝑝(𝑡)

∆𝑡
⁄ ,

𝐵𝑒,𝑝(𝑡)
∆𝑡

⁄ )              (11) 
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For the manufacturer (echelon 3), production capacity adds a constraint (12) : 

 

𝑆3,𝑝(𝑡) = min (
𝐼3,𝑝(𝑡)

∆𝑡
⁄ ,

𝐵3,𝑝(𝑡)
∆𝑡

⁄ , 𝑀𝐶3)                (12) 

 

Production Rate (13): For the supplier (echelon 4), production is constrained by raw material 

availability: 

𝑃4,𝑝(𝑡) = min(𝑂4,𝑝(𝑡), 𝑅𝑀𝐴𝑡 . 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑝,𝑡)             (13) 

Where allocation represents the proportion of raw materials allocated to product $p$ at time $t$. 

 

3) Auxiliary Equations 

 

Demand Forecasting (14): Traditional exponential smoothing: 

 

𝐹𝑒,𝑝(𝑡) =  𝛽𝑒 . 𝑂𝑒−1,𝑝(𝑡) + (1 −  𝛽𝑒). 𝐹𝑒,𝑝(𝑡 − 1)             (14) 

 

For the retailer (echelon 1) (15) : 

 

𝐹1,𝑝(𝑡) =  𝛽1. 𝐷𝑝(𝑡) +  (1 −  𝛽1) . 𝐹1,𝑝(𝑡 − 1)             (15) 

 

LSTM-based Demand Forecasting (16): When using machine learning, the forecast is generated 

by the LSTM model: 

 

𝐹1,𝑝(𝑡) = 𝐿𝑆𝑇𝑀(𝐷𝑝 (𝑡 − 1), 𝐷𝑝(𝑡 − 2), … … 𝐷𝑝(𝑡 − 𝑛), 𝑋𝑡)            (16) 

 

$X_t$ represents additional features, including seasonality indices, promotional events, etc. 

Service Level (17): Service level at echelon $e$ for product $p$ is calculated as: 

 

𝑆𝐿𝑒,𝑝(𝑡) = 1 −  
𝐵𝑒,𝑝(𝑡)

𝐷𝑝(𝑡)+ 𝜖
                (17) 

 

Where $\epsilon$ is a small constant to avoid division by zero. 

 

c) Disruption Modeling 

Raw Material Disruption (18): When a raw material disruption occurs, availability is reduced: 

 

𝑅𝑀 𝐴𝑡 =  𝑅𝑀 𝐴𝑛𝑜𝑟𝑚𝑎𝑙. (1 −  𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑟𝑎𝑤 . 1𝑡𝜖𝑇𝑟𝑎𝑤
)            (18) 

 

Manufacturing Capacity Disruption (19): When a manufacturing disruption occurs, capacity is 

reduced: 

𝑀𝐶3 =  𝑀𝐶3,𝑛𝑜𝑟𝑚𝑎𝑙 . (1 −  𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 . 1𝑡𝜖𝑇𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔
)          (19) 

Transportation Disruption (20): When a transportation disruption occurs, lead times increase: 

𝐿𝑇𝑒 =  𝐿𝑇𝑒,𝑛𝑜𝑟𝑚𝑎𝑙 . (1 + 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑡𝑟𝑎𝑛𝑠 . 1𝑡𝜖𝑇𝑡𝑟𝑎𝑛𝑠
)            (20) 

 

d) Genetic Algorithm Optimization (21) 

The GA optimizes the following decision variables: 

• Safety stock levels: $SS_{e,p}$. 

• Reorder points: $ROP_{e,p}$. 

• Inventory adjustment parameters: $\alpha_e$. 

• Forecast smoothing parameters: $\beta_e$. 



Jurnal Teknologika,  
Volume 15, Issue 1 (2025) 629-642 

635 

 

The objective function to minimize is : 

Min Z = ∑ ∑ ∑ (𝜔1 . 𝐻𝐶𝑒,𝑝 . 𝐼𝑒,𝑝(𝑡) +  𝜔2 . 𝐵𝑒,𝑝(𝑡) +  𝜔3 . 𝑂𝐶𝑒,𝑝 . 𝑂𝑒,𝑝(𝑡))𝑇
𝑡=1

𝑃
𝑡=1

𝐸
𝑒=1        (21) 

Where: 

• $HC_{e,p}$ is the holding cost per unit of product $p$ at echelon  $e$. 

• $SC_{e,p}$ is the stockout cost per unit of product $p$ at echelon  $e$. 

• $OC_{e,p}$ is the ordering cost per order of product $p$ at echelon  $e$. 

• $w_1,w_2,w_3$ are weights reflecting the relative importance of each cost component.  

 

e) Bullwhip Effect Quantification  

The bullwhip effect (22) is quantified by comparing the coefficient of variation (CV) of orders at 

different echelons  (23) : 

𝐵𝑊 𝐸𝑒,𝑝 =  
𝐶𝑉(𝑂𝑒,𝑝)

𝐶𝑉 (𝐷𝑝)
                  (22) 

Where: 

𝐶𝑉 (𝑋) =  
𝜎𝑥

𝜇𝑥
                 (23) 

A value of $BWE_{e,p} > 1$ indicates the presence of the bullwhip effect, with higher values 

representing stronger demand amplification. 

 

2.7 Specific Mathematical Formulation for the Sport Footwear Industry 

 

For the sports footwear industry application, we incorporate additional factors: 

i. Seasonal Demand Pattern (24): Customer demand includes a seasonal component : 

𝐷𝑝(𝑡) =  𝐵𝑎𝑠𝑒𝑝 +  𝑇𝑟𝑒𝑛𝑑𝑝 . 𝑡 + 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑝(𝑡) +  𝑃𝑟𝑜𝑚𝑜𝑡𝑖𝑜𝑛𝑝(𝑡) +  𝜖𝑡            (24) 

$Seasonal_p(t)$ captures the seasonal pattern and $Promotion_p(t)$ captures the effect of 

promotional activities. 

ii. Product Lifecycle (25): For fashion-driven sports footwear, we incorporate product 

lifecycle effects: 

𝐷𝑝(𝑡) =  𝐵𝑎𝑠𝑒𝑝 . 𝐿𝑖𝑓𝑒𝑐𝑦𝑐𝑙𝑒𝑝(𝑡) +  𝑃𝑟𝑜𝑚𝑜𝑡𝑖𝑜𝑛𝑝(𝑡) + 𝜖𝑡            (25) 

$Lifecycle_p(t)$ follows a typical product lifecycle curve (introduction, growth, maturity, 

decline). 

iii. Material Constraints (26): Component availability constraints are modelled as follows: 

f) ∑ 𝐶𝑚,𝑝 . 𝑃4,𝑝(𝑡) ≤  𝑅𝑀 𝐴𝑚,𝑡    ∀𝑚 𝜖 𝑀, 𝑡 𝜖 𝑇𝑝𝜖𝑃              (26)

  

Where: 

• $C_{m,p}$ is the amount of material $m$ required for product $p$; 

• $RMA_{m,t}$ is the availability of material $m$ at time $t$; 

• $M$ is the set of materials. 

This mathematical formulation, combined with the Causal Loop Diagram, provides a 

comprehensive framework for analyzing and optimizing the multi-echelon inventory system in the 

sport footwear industry. 

The GA was configured with a population size of 100, crossover probability of 0.8, mutation 

probability of 0.1, and was run for 500 generations. 

 

2.8 Data Collection 

 

Data for model calibration and validation were collected from multiple sources: 

1. Primary data: Two years of weekly inventory and order data from a major sport footwear 

manufacturer and its supply chain partners, including:  

a) Point-of-sale data from 120 retail locations; 

b) Order and inventory records from 8 regional distribution centres; 

c) Production and inventory data from 3 manufacturing facilities; 
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d) Procurement data from 12 key raw material suppliers. 

2. Secondary data: Industry reports, academic literature, and publicly available information on 

sport footwear supply chains. 

3. Expert input: Semi-structured interviews with 15 supply chain professionals from the sports 

footwear industry to validate model assumptions and parameters. 

 

2.9 Model Validation 

 

The system dynamics model was validated using several techniques: 

1. Structure validation: Expert reviews of causal loop diagrams and stock-flow structures; 

2. Parameter validation: Calibration using historical data and sensitivity analysis; 

3. Behaviour validation: Comparison of model outputs with historical patterns; 

4. Extreme condition testing: Verifying model robustness under extreme parameter values. 

The validation confirmed that the model accurately reproduced historical inventory dynamics and the 

bullwhip effect observed in the supply chain. 

 

2.10  Disruption Scenario Design 

 

Three distinct disruption scenarios were developed to test the model’s performance and optimize 

inventory policies: 

1. Raw material shortage: 45% reduction in raw material availability for 6 weeks; 

2. Manufacturing capacity constraint: 30% reduction in production capacity for 8 weeks; 

3. Transportation disruption: Doubling of lead times between echelons for 4 weeks. 

These scenarios were designed based on historical disruption events in the sports footwear industry 

and expert assessments of future risks. 

 

3. Results and Discussion 

3.1 Baseline System Behavior 

 

The calibrated model successfully reproduced the bullwhip effect observed in the sport footwear 

supply chain. Figure 1 illustrates the amplification of order variability across the four echelons under 

normal operating conditions. Order variability, measured by the coefficient of variation, increased 

from 0.32 at the retail level to 0.89 at the raw material supplier level, confirming the presence of the 

bullwhip effect. 

Analysis of the baseline simulation revealed several key factors contributing to the bullwhip effect in 

the sports footwear supply chain: 

1. Demand forecasting errors: Traditional forecasting methods used by supply chain partners 

resulted in a mean absolute percentage error (MAPE) of 24.6%, significantly contributing to 

inventory oscillations; 

2. Batch ordering practices: Minimum order quantities imposed by manufacturers and 

distributors led to order batching, amplifying demand variability; 

3. Price fluctuations: Promotional activities and discount periods created temporary demand 

spikes that propagated through the supply chain with increasing amplitude; 

4. Lead time variability: Inconsistent lead times across different product categories increased 

uncertainty in inventory planning. 

 

3.2 Machine Learning Forecasting Performance 

 

The integrated LSTM forecasting model demonstrated superior performance compared to traditional 

forecasting methods. Table 1 compares forecast accuracy metrics between the LSTM model and 

conventional methods used by the case company. 
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Table 1. Comparison of Forecasting Methods 

Forecasting Method MAPE (%) MAD RMSE 

LSTM Model 12.3 145.6 203.7 

Moving Average 25.4 278.9 364.2 

Exponential 

Smoothing 
21.8 246.3 329.5 

Linear Regression 19.7 229.8 301.4 

 

The LSTM model reduced forecasting error by 43.6% compared to the currently used exponential 

smoothing method. This figure is derived from Table 1 in the Results and Discussion section (3.2 

Machine Learning Forecasting Performance). The table compares forecasting methods and shows that 

the LSTM model had a MAPE (Mean Absolute Percentage Error) of 12.3%, while the Exponential 

Smoothing method (the conventional method used by the case company) had a MAPE of 21.8%. The 

percentage improvement is calculated as: (21.8% - 12.3%) / 21.8% = 0.436 or 43.6%. This represents 

how much the forecasting error was reduced by switching from the conventional exponential 

smoothing method to the LSTM machine learning model when integrated into the system dynamics 

model. This improved forecasting accuracy reduced the bullwhip effect, with the coefficient of 

variation at the raw material supplier level decreasing from 0.89 to 0.61. These figures appear in 

sections 3.1 (Baseline System Behavior) and 3.2 of the Results and Discussion. The paper states that 

under normal operating conditions, the coefficient of variation increased from 0.32 at the retail level 

to 0.89 at the raw material supplier level, confirming the presence of the bullwhip effect. Later, in 

section 3.2, the paper mentions that when the LSTM model was integrated into the system dynamics 

model, “this improved forecasting accuracy reduced the bullwhip effect, with the coefficient of 

variation at the raw material supplier level decreasing from 0.89 to 0.61.” So the figures 0.89 and 0.61 

represent the coefficient of variation (a measure of the bullwhip effect) at the supplier level before and 

after implementing the machine learning forecasting approach, respectively. 

 

 

3.3 Optimized Inventory Policies 

 

The genetic algorithm optimization yielded distinct inventory policies for each echelon. Table 2 

summarizes the optimized parameters compared to the baseline policies. 

 

 

Table 2. Comparison of Baseline and Optimized Inventory Policies 

Echelon Parameter Baseline Policy Optimized Policy Change (%) 

Retailer Safety Stock (days) 14 10 -28.6% 

  Reorder Point (units) 560 420 -25.0% 

  Order Frequency (days) 7 5 -28.6% 

Distributor Safety Stock (days) 21 16 -23.8% 

  Reorder Point (units) 1200 975 -18.8% 

  Order Frequency (days) 14 10 -28.6% 

Manufacturer Safety Stock (days) 28 20 -28.6% 

  Reorder Point (units) 3500 2800 -20.0% 

  Order Frequency (days) 21 15 -28.6% 

Raw Material 

Supplier 
Safety Stock (days) 35 25 -28.6% 

  Reorder Point (units) 5000 3800 -24.0% 

  Order Frequency (days) 30 20 -33.3% 
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The optimized policies resulted in an 18.7% reduction in total inventory costs while maintaining a 

service level of 97.2% compared to the baseline policy’s 96.8%. This figure comes directly from 

section 3.3 of the Results and Discussion section (Optimized Inventory Policies). After presenting 

Table 2, which compares baseline and optimized inventory policies, the paper explicitly states: “The 

optimized policies resulted in an 18.7% reduction in total inventory costs while maintaining a service 

level of 97.2% compared to the baseline policy’s 96.8%. These service level percentages also come 

directly from the same sentence in section 3.3. The service level metrics show that despite reducing 

inventory costs significantly (18.7%), the optimized policies improved service levels slightly (from 

96.8% to 97.2%). This is important because it demonstrates that the cost reductions didn’t come at the 

expense of customer service. The most significant improvements came from decreased safety stock 

levels and more frequent, smaller orders, which mitigated the bullwhip effect directly. 

 

3.4 Disruption Scenario Analysis 

 

The model’s performance was evaluated under the three disruption scenarios, comparing traditional 

policies, optimized static policies, and the proposed adaptive policies that leverage machine learning 

forecasting and dynamic parameter adjustment. 

 

3.4.1 Raw Material Shortage Scenario 

 

The adaptive policy outperformed traditional and optimized static policies when faced with a 45% 

reduction in raw material availability for 6 weeks. Figure 2 shows the inventory levels at the 

manufacturer echelon under the three policy approaches. 

a) Adaptive policy (93.4%): This proposed approach combines machine learning forecasting 

with dynamic parameter adjustment, which performed best in maintaining service levels during 

the disruption.  

b) Traditional policy (78.2%): This represents the conventional inventory management 

approaches used before optimization, which performed worst during the disruption.  

c) Optimized static policy (85.7%): This refers to policies that were optimized using the genetic 

algorithm but without the dynamic adaptation capabilities, which performed better than 

traditional policies but not as well as the fully adaptive approach. 

 

 
Figure 2. Inventory Level at Manufacturer During Raw Material Shortage 

 

This improvement was achieved through: 

1. Early detection of supply disruption through pattern recognition in the LSTM model; 

2. Dynamic reallocation of raw materials to priority products; 

3. Gradual adjustment of safety stock levels across all echelons. 
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3.4.2 Manufacturing Capacity Constraint Scenario 

Under a 30% reduction in production capacity for 8 weeks, the adaptive policy demonstrated superior 

performance in managing the production backlog. The key metrics are summarized in Table 3. 

Table 3. Performance Under Manufacturing Capacity Constraint 

Metric 
Traditional 

Policy 

Optimized 

Static Policy 

Adaptive 

Policy 

Maximum Backlog (units) 14,52 10,84 7,32 

Average Service Level (%) 81.5 88.3 94.1 

Recovery Time (weeks) 12 9 7 

Total Cost Increase (%) 38.7 24.3 16.2 

 

The adaptive policy achieved these improvements through: 

1. Prioritization of high-margin and high-demand products; 

2. Dynamic adjustment of order quantities based on real-time capacity constraints; 

3. Coordinated inventory adjustments across echelons to smoothen the impact of capacity 

reduction. 

 

3.4.3 Transportation Disruption Scenario 

 

When lead times doubled between echelons for 4 weeks, the adaptive policy significantly reduced the 

negative impacts on inventory performance, as shown in Figure 3. 

The adaptive policy reduced the bullwhip effect amplification during the disruption period, with the 

coefficient of variation at the raw material supplier level reaching only 1.12 compared to 1.78 under 

the traditional policy. The coefficient of variation is a standardized measure of dispersion calculated 

as the ratio of the standard deviation to the mean (CV = σ/μ). In supply chain management, it’s 

commonly used to quantify the bullwhip effect by comparing the variability of orders at different 

echelons. 

 

 
Figure 3. Bullwhip Effect During Transportation Disruption 

 

The lower value under the adaptive policy (1.12 vs 1.78) indicates that order variability was 

significantly reduced compared to the traditional policy. This 37% reduction in the coefficient of 

variation demonstrates that the adaptive policy was more effective at mitigating the bullwhip effect 

during the transportation disruption scenario. 

This improvement was achieved through: 

1. Anticipatory ordering based on early warning signals detected by the LSTM model; 

2. Temporary adjustment of safety stock levels to accommodate increased lead time uncertainty; 
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3. Coordinated communication protocols that reduced information distortion across echelons. 

 

3.5 Sensitivity Analysis 

 

To assess the robustness of the proposed model, we conducted a sensitivity analysis on key parameters.  

Figure 4 illustrates how total supply chain costs vary with changes in demand variability, lead time, 

and forecast accuracy. 

The results indicate that the adaptive policy maintained its superiority across various parameter values, 

with the most significant advantage observed under high-demand variability conditions. The model 

was most sensitive to forecast accuracy, highlighting the importance of the machine learning 

component in the overall system performance. 

 

4. Conclusion 

 

This research developed and validated a dynamic system model for optimizing inventory policies in 

multi-echelon sports footwear supply chains, addressing the challenges posed by the bullwhip effect 

and supply chain disruptions. Integrating system dynamics modelling with machine learning for 

demand forecasting and metaheuristic optimization for parameter tuning yielded several significant 

findings. 

First, the study demonstrated the efficacy of system dynamics modelling in capturing the complex 

interactions between supply chain echelons and the resulting bullwhip effect in the sport footwear 

industry. By modelling the feedback mechanisms and time delays inherent in multi-echelon systems, 

the approach provided valuable insights into the causes and potential solutions for demand 

amplification. 

Second, the research quantified the impacts of different disruption types on inventory performance 

across multiple echelons. Raw material shortages were found to have the most severe long-term 

effects, while transportation disruptions caused the most significant short-term service level 

degradation. Manufacturing capacity constraints created the most challenging recovery dynamics due 

to the backlog accumulation effect. 

Third, integrating machine learning algorithms for demand forecasting significantly improved 

prediction accuracy, reducing forecasting errors by 43.6% compared to traditional methods. This 

improvement directly contributed to bullwhip effect mitigation by lowering one of its primary 

causes—demand signal distortion. 

Fourth, the metaheuristic optimization approach identified inventory policies that reduced total costs 

by 18.7% while maintaining high service levels, demonstrating the potential for significant efficiency 

improvements in sport footwear supply chains through optimized parameter settings. 

Finally, the adaptive policy combining machine learning forecasting with dynamic parameter 

adjustment demonstrated superior performance under disruption scenarios, reducing recovery time by 

42% compared to traditional approaches and maintaining higher service levels throughout the 

disruption period. 

These findings have important implications for both theory and practice. Theoretically, the research 

advances our understanding of how machine learning can be effectively integrated with system 

dynamics modelling to enhance supply chain resilience. From a practical perspective, the findings 

offer sports footwear companies a framework for developing more robust inventory policies that can 

withstand disruptions while minimizing costs. 

Future research could extend this work by incorporating additional echelons or parallel supply chains, 

exploring the impact of different information-sharing strategies, or applying the model to other 

industries with similar characteristics. Additionally, integrating blockchain technology for enhanced 

supply chain visibility represents a promising direction for further model development. 
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