APPLICATION OF THE NAÏVE BAYES ALGORITHM FOR PREDICTION OF LUNG DISEASES USING RAPIDMINER
Abstract
The lungs are the main organ in the human respiratory system which is located in the chest cavity and consists of a pair. The lungs are a vital organ that greatly influences the body's health, because it has the function of maintaining the body's acid-base balance, removing carbon dioxide that the body does not need and water vapor. Smoking is the main cause of lung disease, in 2020 based on the World Health Organization (WHO) report, it is estimated that 10 million people suffer from lung disease worldwide. This research uses the Naïve Bayes classification algorithm to obtain a prediction model that can predict lung disease patient data. This research aims to obtain accuracy values using the Naïve Bayes algorithm. The data used in this research was obtained from Kaggle which contains 469 data with 14 attributes in it. RapidMiner is used as a tool to test the patient dataset used to produce a prediction with an accuracy rate of 99.9% risk false (no risk of having lung disease).
References
C. Anam and H. B. Santoso (2018) “Perbandingan Kinerja Algoritma C4.5 dan Naive Bayes untuk Klasifikasi Penerima Beasiswa,” Energy -J. Ilm. Ilmu-Ilmu Tek., vol. 8, no. 1, pp. 13–19.
Haris. (2022). Metode Naive Bayes UntukMemprediksi Penyakit Stroke. JurnalSistem Komputer dan Kecerdasan Buatan.
Kaggle. (2024, April 25). Retrieved from https://kaggle.com
Musa dan Alang (2017) " Analisis Penyakit Paru-Paru Menggunakan Algoritmak-Nearest Neighbors Pada Rumah Sakit Aloei Saboekota Gorontalo" ILKOM Jurnal Ilmiah Volume 9 Nomor 3 Desember 2017, ISSN print 2087-1716, ISSN online 2548-7779
Reni Rahmadewi dan Rahmadi Kurnia (), "Klasifikasi Penyakit Paru Berdasarkan Citra Rontgen Dengan Metoda Segmentasi Sobel", ol: 5, No. 1, Maret 2016 ISSN: 2302 -294
S. Febriani and H. Sulistiani (2021) “Analisis Data Hasil Diagnosa Untuk Klasifikasi Gangguan Kepribadian Menggunakan Algoritma C4.5,” 89Jurnal Teknol. dan Sist. Inf., vol. 2, no.4, pp. 89–95, 2021
Turban, E., Delen, D., & Sharda, R. (2018). Business intelligence, analytics, and data science: A managerial perspective. Harlow; Munich: Pearson Prentice Hall.
T. N. Padilah and R. I. Adam, (2019) “Analisis Regresi Linier Berganda Dalam Estimasi Produktivitas Tanaman Padi Di Kabupaten Karawang,” FIBONACCI J. Pendidik. Mat. dan Mat., vol. 5, no. 2, p. 117, 2019, doi: 10.24853/fbc.5.2.117-128.
Wulandari, F., Jusia, P. A., & Jasmir. (2020). Klasifikasi Data Mining Untuk Mendiagnosa Penyakit ISPA Menggunakan Metode Naïve Bayes Pada Puskesmas Jambi Selatan. Jurnal Manajemen Teknologi Dan Sistem Informasi (JMS). 2(3): 214–227.